Renewable Energy

Presented by Sean Flanagan

Background

- Flanagan and Sun since 2004
- Solar electric (PV) off grid and grid tie, solar thermal, pool heating, solar air heating, small wind turbines, microhydro in theory
- First several years off-grid installation

Background

- 2009 Ontario passed GEA
 - Put in law ability for RE system owners to sell energy to grid
 - Offer high tariff initially, reduce over time as installation costs decrease
 - 2009 to 2014 80% of business from FIT
- 2015 90% of business is off-grid

Topics Covered

- Electrical Basics
- Photovoltaics (PV, or "solar electricity")
- Wind energy
- Micro hydro
- Off grid and grid tied systems
- Micro-FIT and Net Metering
- Doing an energy audit
- Living with renewable energy

Goal for Course

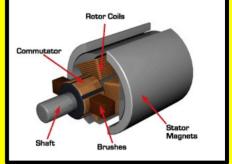
 At the end of the course today we will build this off-grid house

Current

- Symbol is I
- Units are amperes or amps (A)
- Movement or flow of electrons in conductor
- Voltage
 - symbol is V
 - units are volts (V)
 - Think of it like electrical "pressure"

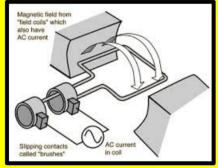
Power

- Symbol is P
- Units are watts or kilowatts (W or kW)
- Directly related to I and V
- It is the "oompf" at a particular point in time


Example

- A small light has 12.4V across terminals and 0.5A of current flowing
- P = I x V = 0.5 x 12.4 = 6.2W

- Energy
 - Symbol is E
 - Units are watt-hours (Wh)
 - How much work was done? What was accomplished? How much fuel was used?
- Example
 - If a light using 6.2W of power is on for 5 hours, how much energy is consumed?
 - E = P x t = 6.2 x 5 = 31Wh (0.031kWh)


- Electricity flowing in one direction only is called direct current (DC)
 - Batteries
 - PV modules (solar panels)
 - DC motors

- Electricity that alternately flows in one direction, then the other is called alternating current (AC)
 - Normal house current from grid
 - AC motors

Microhydro and wind turbines

Multimeters

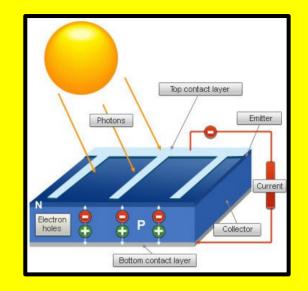
Analog (needle)

Digital (screen)

Multimeters

Symbol	Meaning
v	V DC
$_{ m v}\sim$	V AC
mV	millivolts (.001V or 1/1,000V)
Α	Amps
mA	milliamps (.001A or 1/1000A)
μΑ	microA (.000001A or 1/1,000,000A)
Ω	Resistance (Ohms)
kΩ,ΜΩ	kilo-Ohms, Megohms
))))	Continuity beeper
Hz	Frequency

- Multimeters
 - Measure DC voltage of various batteries
 - Pay attention to polarity (+ and -)
 - Measure AC voltage at a receptacle

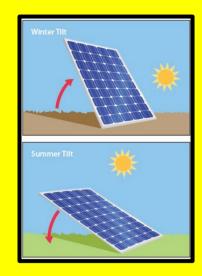

- Build a basic DC off-grid system
 - Energy storage (battery) & appliance (light)
 - Add protection / convenience (breaker)
 - Need way to replace energy (PV module)
 - Control charge process (charge controller)

- Build a basic AC off-grid system
 - Start with basic DC off-grid system
 - Need a way to change DC to AC (inverter)
 - Add ability to charge from AC source (3 stage battery charger)

Photovoltaics

Photo + Volt = light + electricity

PV, solar electric, solar


- Photovoltaic effect discovered by Einstein (Nobel Prize for Physics in 1921)
- Sunlight strikes silicon, electrons absorb energy & jump into top contact layer, follow circuit back to bottom contact layer
- Solar panels are typically 12V or 24V nominally (can be connected in series to make higher voltage arrays)

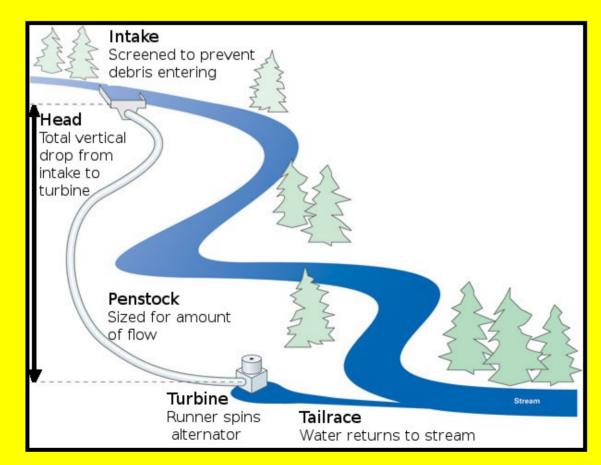
Photovoltaics

- Why use PV?
 - Cost is falling rapidly (now 1kW = \$1000, 10 years ago 1kW = \$10,000)
 - Once installed, zero carbon emissions
 - Safe, easy to install, almost no maintenance, 25 year + life span, scalable, proven technology

Photovoltaics

- Dos and Don'ts?
 - Ideally south facing (azumith)

- For fixed arrays, to maximize annual output at our latitude, tilt 35 degrees from horizontal
- Off-grid systems typically favour winter sun
- Seasonally adjustable & trackers are options
- Shading is a big problem for PV (not linear)
- e.g. 3 panels connected in series ... entire string output drops to level of shaded panel


Wind Energy

- Can be mechanical or to produce electricity
 - Mechanical systems for pond aeration and water pumping
 - Electrical wind systems consist of tower and turbine with blades
 - Height is critical at least 20 feet above nearest object within 300 feet radius (otherwise turbulence)
 - Small scale wind typically impractical

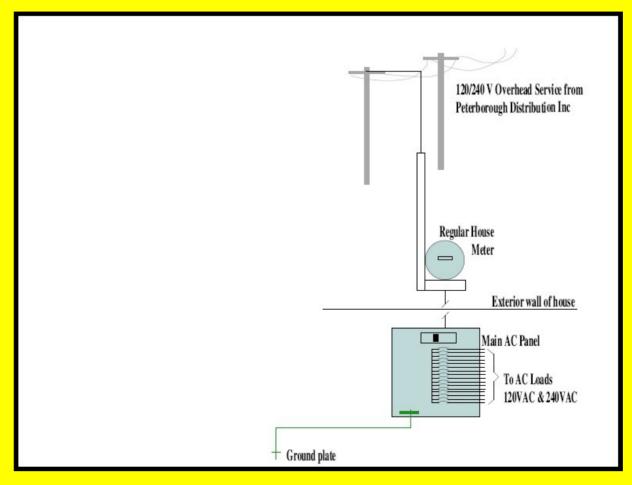
Microhydro

- Not very common
 - Power a function of "head" and "flow"

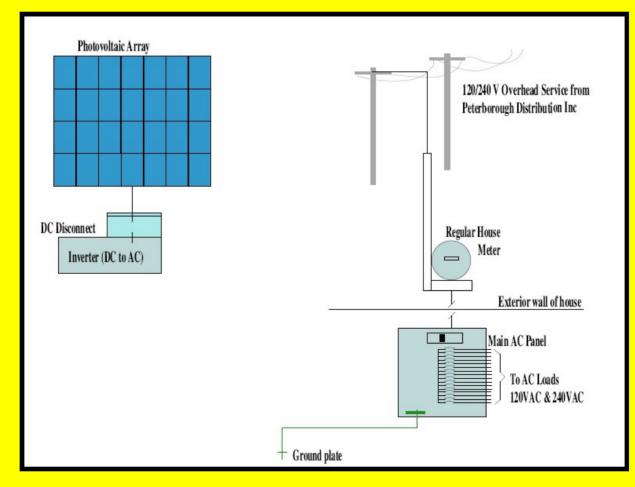
- Off-grid
 - Almost always because connection to grid is too expensive (\$20,000 +)
 - Angry Hydro One customers "paying too much" ... grid is still relatively inexpensive and conservation is best money spent
 - Batteries are achilles heel (expensive, prone to failure if abused, bulky) ... lithium ion helps to address failure and bulk
 - Difficult to make an existing home off-grid
 - Requires a change in attitude, not comfort

- Grid-tie Systems
 - Allow use of renewable energy without batteries and maintain security of grid
 - During grid failure, RE system shuts down
 - Can add batteries to allow use of renewable energy during grid failures (hybrid off-grid)
 - Distributed generation (less line loss)

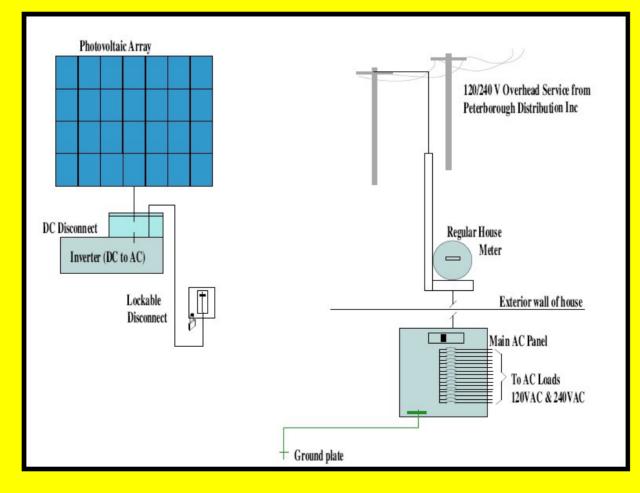
- String inverters, microinverters, power optimizers
 - String inverters prone to shading issues due to many modules in series
 - Microinverters and power optimizers allow solar modules to behave independently
 - Every solar module is connected to its own microinverter or power optimizer on the roof



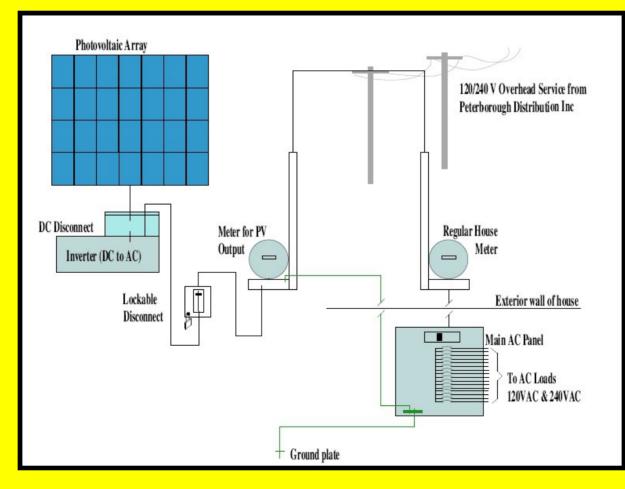
- Microinverters versus power optimizers
 - Microinverter converts DC to AC on the roof
 - Power optimizers adjust voltage and current to maximize output of each PV module and tie in to a central inverter
 - When devices fail, solar panel needs to be removed to access unit for replacement
 - Microinverters typically use electrolytic capacitors (fluid) whereas power optimizers use ceramic capacitors (solid)


microFIT

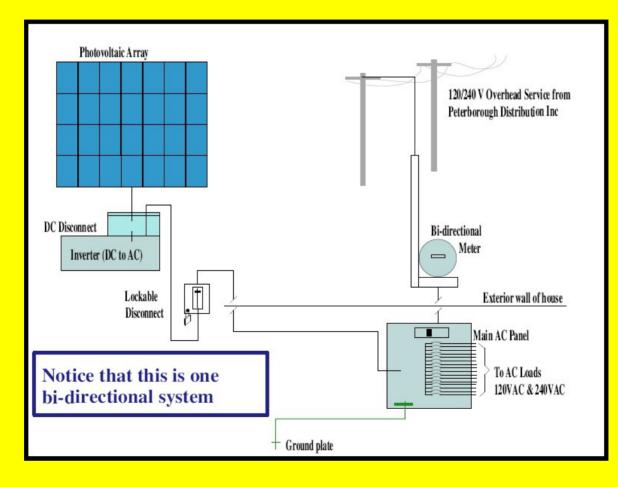
20 year fixed price contract to sell RE to grid


microFIT

Solar array feeds a grid-tie inverter


microFIT

Lockable disconnect for safety


microFIT

Output metered separately (all goes to grid)

Net Metering

RE used by house – extra reverses meter

Net Metering

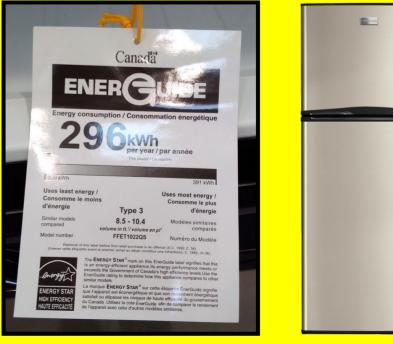
- RE used by house extra reverses meter
- Monthly credits carried forward effectively annualizing solar output
- Size system to be no more than expected annual kWh consumption
- As price of electricity increases, benefit of initial investment increases

Energy Audit

- Full Energy Audit
 - New Energy, Ptbo GreenUp
 - Typically \$400 or \$500
 - Look at insulation, windows, lighting, heating system, blower door test for leakage
 - Full report recommending upgrades
 - Best money spent is on conservation

Energy Audit

Basic Electrical Energy Audit


- Take stock of your electrical loads
- Get a kill-a-watt meter
- Look for phantom loads
- Review electrical bills and look for patterns

🗟 Appliance Loads Short List.xls - OpenOffice Calc								
<u>F</u> ile	<u>Edit View Insert Format Tools Data Window H</u>	lelp						
🖥 • 😕 • 🗔 👒 📝 📓 🖴 1% 1 🖑 🚝 🖌 🖷 🏗 • 🛷 1 19 • 12 - 1 66 🐉 👬 1 🛍 2/ 1 👬 2/ 💼 🗟 🔍 1 20 🖕 1 Find								
💀 Arial 💽 10 💽 B / U 🗏 🗐 🗏 🗮 🗐 🙏 % 💱 🎎 🥳 🤕 🗆 🗙 🖌 💂								
816 💽 🏂 🕱 =								
	A	В	С	D	E	F		
1	Appliance	Qty	Power (Watts)	Daily Use (h)	Total Energy (kWh)			
2	Air conditioner (large room)	1	1050	5	5.25			
3	Air conditioner (small room)		750					
4	Battery Recharger		20					
	Belt Sander		1000					
6	Blender		325					
7	Block heater		600					
8	Circular Saw		1600					
9	Circulator pump		65					
10	Clock radio		5					
11	Coffee maker	1	900	0.25	0.225			
12	Computer (Desktop)		150					
13	Computer (Laptop)		25					
	Curling Iron		50					
15	Dehumidifier		350					
	Dishwasher		1300					
17	Drill		300					
	Electric range with oven		12500					
	Electric water heater		3800					
20	Fan (industrial ceiling)		60					
21	Fan (portable)		115					
	Freezer		200					
23	Furnace fan motor		350					
24	Hair dryer		1200					
25	Iron		1000					
26	Jigsaw		300					
			1000					

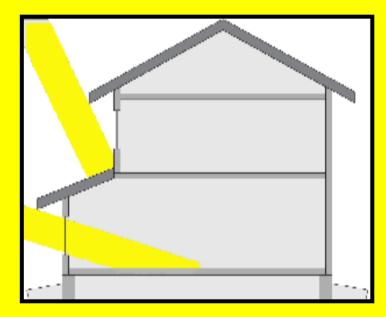
Energy Audit

• What to do?

- Low hanging fruit LED lighting, phantom loads (use power bars), shift to off-peak usage, clothes line, timers, jacket for water heater
- When buying new appliances find most energy efficient models

Living with Renewable Energy

- As an installer my goal is to make it is seamless as possible
- For off-grid customers
 - Maintenance free batteries
 - Automatic generator start
 - Basic voltages to watch for
- For grid-tie customers
 - Monitor system output regularly


Living with Renewable Energy

- What to expect
 - For grid-tie solar
 - > more money in your pocket
 - a warm fuzzy feeling
 - For off-grid solar
 - closer monitoring of system
 - unplanned power outages
 - the feeling that no matter how many times you ask people to turn off lights you will never get them to fully comply
 - eventual battery replacement
 - > deeper understanding of energy use

Assemble Portable System

Bonus Tracks

- Passive solar as part of the building design
 - consider roof overhang, location & quality of windows, types of glazing
 - cost is minimal, savings are annual & increase as fuel prices increase

Bonus Tracks

- Solar Air Heaters
 - Relatively inexpensive and simple
 - Easy to heat air quickly, but no thermal mass
 - \$ / Btu produced is not great (unless DIY)
 - Windows are generally better

